Publications

surfacetrap

    In journals

  1. N. Aharon, I. Schwartz, and A. Retzker,
    Quantum control and sensing of nuclear spins by electron spins under power limitations,
    Phys. Rev. Lett. 122, 120403 (2019).

  2. A. Bautista-Salvador, G. Zarantonello, H. Hahn, A. Preciado-Grijalva, J. Morgner, M. Wahnschaffe, and C. Ospelkaus,
    Multilayer ion trap technology for scalable quantum computing and quantum simulation,
    New J. Phys. 21, 043011 (2019).

  3. K. Bergmann, H.-C. Nägerl, C. Panda, G. Gabrielse, E. Miloglyadov, M. Quack, G. Seyfang, G. Wichmann, S. Ospelkaus, A. Kuhn, S. Longhi, A. Szameit, P. Pirro, B. Hillebrands, X.-F. Zhu, J. Zhu, M. Drewsen, W. K. Hensinger, S. Weidt, T. Halfmann, H. Wang, G. S. Paraoanu, N. V. Vitanov, J. Mompart, Th. Busch, T. J. Barnum, D. D. Grimes, R. W. Field, M. G. Raizen, E. Narevicius, M. Auzinsh, D. Budker, A. Pálffy, and C. H. Keitel,
    Roadmap on STIRAP applications,
    J. Phys. B: At. Mol. Opt. Phys. 52, 202001 (2019).

  4. I. A. Boldin, A. Kraft, and Ch. Wunderlich,
    Measuring Anomalous Heating in a Planar Ion Trap with Variable Ion-Surface Separation,
    Phys. Rev. Lett. 120, 023201 (2018).

  5. G. T. Genov, N. Aharon, F. Jelezko, and A. Retzker,
    Mixed dynamical decoupling,
    Quantum Sci. Technol. 4, 035010 (2019).

  6. G. T. Genov, M. Hain, N. V. Vitanov, and T. Halfmann,
    Universal composite pulses for efficient population inversion with an arbitrary excitation profile,
    Phys. Rev. A 101, 013827 (2020).

  7. R. Grimaudo, N. V. Vitanov, and A. Messina,
    Coupling-assisted Landau-Majorana-Stueckelberg-Zener transition in two interacting-qubit systems,
    Phys. Rev. B 99, 174416 (2019).

  8. R. Grimaudo, N. V. Vitanov, and A. Messina,
    Landau-Majorana-Stueckelberg-Zener dynamics driven by coupling for two interacting qutrit systems,
    Phys. Rev. B 99, 214406 (2019).

  9. H. Hahn, G. Zarantonello, A. Bautista-Salvador, M. Wahnschaffe, M. Kohnen, J. Schoebel, P. O. Schmidt, and C. Ospelkaus,
    Multilayer ion trap with 3-dimensional microwave circuitry for scalable quantum logic applications,
    Appl. Phys. B 125, 154 (2019).

  10. H. Hahn, G. Zarantonello, M. Schulte, A. Bautista-Salvador, K. Hammerer, and C. Ospelkaus,
    Integrated 9Be+ multi-qubit gate device for the ion-trap quantum computer,
    npj Quantum Inf. 5, 70 1-5 (2019).

  11. P. A. Ivanov and N. V. Vitanov,
    Two-qubit quantum gate and entanglement protected by circulant symmetry,
    Scient. Rep. 10, 5030 (2020).

  12. P. Kaufmann, T. F. Gloger, D. Kaufmann, M. Johanning, and Ch. Wunderlich,
    High-fidelity preservation of quantum information during trapped ion transport,
    Phys. Rev. Lett. 120, 010501 (2018).

  13. T. Sriarunothai, S. Wölk, G. S. Giri, N. Friis, V. Dunjko, H. J. Briegel, and Ch. Wunderlich,
    Speeding-up the decision making of a learning agent using an ion trap quantum processor,
    Quantum Sci. Technol. 4, 015014 (2019).

  14. B. T. Torosov and N. V. Vitanov,
    Composite pulses with errant phases,
    Phys. Rev. A 100, 023410 (2019).

  15. N. V. Vitanov and M. Drewsen,
    Highly-efficient detection and separation of chiral molecules through shortcuts to adiabaticity,
    Phys. Rev. Lett. 122, 173202 (2019).

  16. S. Wölk, T. Sriarunothai, G. S. Giri, and Ch. Wunderlich,
    Distinguishing between statistical and systematic errors in quantum process tomography,
    New J. Phys. 21, 013015 (2019).

  17. G. Zarantonello, H. Hahn, J. Morgner, M. Schulte, A. Bautista-Salvador, R. F. Werner, K. Hammerer, and C. Ospelkaus,
    Robust and resource-efficient microwave near-field entangling 9Be+ gate,
    Phys. Rev. Lett. 123, 260503 (2019).

  18. On arXiv.com

  19. G. T. Genov, Y. Ben-Shalom, F. Jelezko, A. Retzker, and N. Bar-Gill,
    Efficient and robust signal sensing by sequences of adiabatic chirped pulses,
    arXiv:1910.01253.

  20. Z. D. Romaszko, S. Hong, M. Siegele, R. K. Puddy, F. R. Lebrun-Gallagher, S. Weidt, and W. K. Hensinger,
    Engineering of Microfabricated Ion Traps and Integration of Advanced On-Chip Features,
    arXiv:1908.00267.

  21. C. Spee, H. Siebeneich, T. F. Gloger, P. Kaufmann, M. Johanning, Ch. Wunderlich, M. Kleinmann, and O. Gühne,
    Genuine temporal correlations can certify the quantum dimension,
    arXiv:1811.12259 (2018).

  22. B. T. Torosov, M. Drewsen, and N. V. Vitanov,
    Efficient and robust chiral resolution by composite pulses,
    arXiv:2001.10871.

  23. B. T. Torosov, S. S. Ivanov, and N. V. Vitanov,
    Narrowband and passband composite pulses for variable rotations,
    arXiv:2004.08456.

  24. B. T. Torosov and N. V. Vitanov,
    High-fidelity composite quantum gates for Raman qubits,
    arXiv:2004.12810.

  25. Y. Vaknin, B. Tratzmiller, T. Gefen, I. Schwartz, M. Plenio, and A. Retzker,
    On the robustness of the NV-NMR spectrometer setup to magnetic field inhomogeneities,
    arXiv:2002.10852.

  26. M. Webber, S. Herbert, S. Weidt, and W. K. Hensinger,
    Efficient Qubit Routing for a Globally Connected Trapped Ion Quantum Computer,
    arXiv:2002.12782.

    Patents

  1. A. Bautista-Salvador, C. Ospelkaus, M. Wahnschaffe, and J. Morgner,
    Verfahren zum Herstellen einer Atomfalle sowie Atomfalle,
    DE 10 2018 111 220.3 (2019).
    https://register.dpma.de/DPMAregister/pat/register?AKZ=1020181112203